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Stratified Sadovskii flow in a channel 

By S. CHERNYSHENKO 
Institute of Mechanics, Moscow University, 1 17192 Moscow, Russia 

(Received 3 January 1992 and in revised form 30 November 1992) 

Stably stratified and non-stratified flows past a touching pair of vortices with 
continuous velocity are considered. An asymptotic solution for the very long eddies is 
determined. Numerical results cover the whole range of subcritical stratification and 
eddy length. 

1. Introduction 
Sadovskii flows are steady inviscid flows past a touching pair of vortex regions, 

having potential flow far upstream and with constant vorticity of opposite signs inside. 
Sadovskii (1971a) and Saffman & Tanveer (1982) calculated an unbounded non- 
stratified flow of this kind and Turfus (1993) made several calculations for the 
corresponding channel flow. Pierrehumbert (1980) and Smith (1986) considered closely 
related problems. Sadovskii flows are important because of their role in the asymptotic 
theory of the steady high-Reynolds-number flow past a bluff body (Chernyshenko 
1988). 

The generalization to stratified flow in this paper is restricted to the case of a uniform 
density profile far upstream, constant density inside the eddy equal to the density on 
the eddy boundary outside, and the Boussinesq approximation throughout. 

2. Problem formulation 
Let us consider the symmetry line dividing the eddy as a lower wall of a channel. 

Then there is only one region of closed streamlines (see figure 1). Using the channel 
width as the lengthscale and velocity far upstream as the velocity scale, the equation 
for the non-dimensionalized streamfunction $ may be written in the following form : 

Here A is a parameter, Ri is the Richardson number, Ri = (&p/p)gH/ U 2  where p is the 
density, Sp is the difference between the density at the lower and upper walls, g is the 
gravitational acceleration and Hand U are the dimensional channel height and velocity 
far upstream, respectively. The density inside the eddy is assumed to be constant and 
it is continuous at the eddy boundary. 

The boundary conditions are 

y = o ,  $ = O ,  
y = l ,  $ = 1 ,  

x + + o o ,  $+y. 
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FIGURE 1. Sketch of the flow (not to scale). 

The decrease of the Bernoulli constant on the eddy boundary is taken to be zero 
because this is a case of interest in the asymptotic theory of the steady high-Reynolds- 
number flow past a bluff body. For the unbounded flow, solutions for Ri = 0 and 
different values of A are really the same, being different in size only. For the flow in a 
channel a family of solutions exists. With a fixed upstream velocity an increase in A 
reduces the size of the eddy and, correspondingly, the influence of the walls on the eddy 
properties decreases. The appropriate Richardson number must in this case be 
calculated via the eddy size rather than the channel width and it tends to zero with the 
eddy size. Eventually for A + co the unbounded non-stratified Sadovskii flow emerges. 

A decrease in A leads to growth of the eddy. The eddy width is limited by the channel 
walls and the ultimate behaviour is difficult to anticipate but the numerical results 
described in 94 give strong evidence that the eddy width remains finite and the eddy 
length tends to infinity when A approaches some finite value which depends on Ri. This 
implies the long-eddy asymptotics which follow in $3.  

3. Flows with very long eddies 
When the eddy length L tends to infinity, the proper scale for the longitudinal 

coordinate x is L. Hence let x = L X ,  L-t 00, X - 1. The asymptotic solution in this 
limit clearly cannot be valid in the vicinity of the front and rear stagnation points, 
where a separate analysis is needed. Equation (2.1) may be rewritten as 

For L+ co we assume A + A ,  and denote Y = lim 9. In this limit we obtain 
L+m 

a y a y 2  = - w ( ~ , y ) .  

Together with boundary conditions at the channel walls this gives the following 
dependence of Y on y for a given value of A, :  

Y = y - W, sin [O, - 1) R&]/sin [( W, - 1) R&], y > W,, 1. 
(3.1) 

(3-2) 
where W, is the eddy width. The value of A ,  is still unknown. As Y does not depend 
on X ,  the eddy boundary is flat except in the regions near the eddy ends where the 
proper lengthscale in both directions is the channel width. Therefore equation (2.1) 

Y = i A ,  ( y 2 -  W, y) ,  Y < W,,j 
A ,  = 2"1+ W, Rit cot ((1 - w,) w,, 
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FIGURE 2. The long-eddy asymptotic results, 

does not change. The new features of this flow are due to the different upstream and 
downstream conditions. For the rear end of the eddy, for example, the downstream 
condition, x+co, $+y, remains but the upstream condition is now a matching 
condition with the flow on the other scale: x+--co, ++ W j ) .  

The requirement for momentum conservation allows us to find W, without solving 
this problem fully. Using the present variables, momentum conservation may be 
written in the following form: 

1 * 
I = 1 [+($: - $:) - 1 wd$] dy = constant, 

0 0 
(3.3) 

where, as usual, subscripts x and y denote differentiation. As this form is somewhat 
unusual it is worth noting that its validity is easy to verify by taking its derivative with 
respect to x and using (2. l), as follows : 

Far upstream and far downstream the vertical velocity component, - $z, vanishes. 
Substituting in (3.3) w from (2.1) and $ from (3.1) we obtain 

I =  -&A",&++R~(I - W & ) + + R ~ ~ W % C O ~ [ ( I -  W,)R~+I++(I + w,). 
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50 
00 
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2.5 
5 

10 
30 
a3 

0.5 
2.5 
5 

10 
15 

0.5 
2.5 
5 

10 

co 

a, 

Ri 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
8.5 
8.5 
8.5 
8.5 
8.5 
8.5 
9.0 
9.0 
9.0 
9.0 
9.0 

A 

74.1 
17.0 
11.1 

a, 

9.27 
9.01 
9.00 
9.00 
9 

69.7 
11.1 
7.62 
7.05 
7.01 
7.01 

5.40 
4.72 
4.68 
4.69 
4.68 

4.40 
4.12 
4.11 
4.08 

63.0 

59.0 

C 
73 
74 
85 

111 
186 
360 
720 
900 

70 
57 
80 

149 
44 1 

64 
39 
71 

136 
20 1 

60 
41 
75 

141 

a2 

a, 

co 

co 

L; 
0 
0.088 
0.409 
0.735 
1.23 
2.09 
3.76 
4.59 

0.090 
0.507 
0.920 
1.56 
3.91 

0.095 
0.784 
1.42 
2.49 
3.55 

0.099 
0.946 
1.67 
2.97 

a3 

a, 

co 

a3 
TABLE 1. Basic results 

W 
0 
0.052 
0.244 
0.414 
0.572 
0.651 
0.666 
0.666 

0.054 
0.301 
0.471 
0.572 
0.608 
0.608 
0.056 
0.388 
0.468 
0.499 
0.503 
0.502 
0.058 
0.389 
0.447 
0.465 
0.464 

2 
3 
- 

b 
0.55 
0.544 
0.541 
0.538 
0.527 
0.515 
0.508 
0.506 

0.546 
0.541 
0.532 
0.519 
0.513 

0.544 
0.530 
0.516 
0.508 
0.505 

0.546 
0.522 
0.512 
0.506 

1 
2 
- 

1 
2 
- 

1 
2 
- 

1 
2 
- 

U 

0.44 
0.44 
0.442 
0.419 
0.355 
0.254 
0.157 
0.132 
0 
0.44 
0.440 
0.388 
0.292 
0.231 
0 
0.44 
0.376 
0.262 
0.172 
0.127 
0 
0.43 
0.317 
0.219 
0.138 
0 

Far downstream the flow is uniform, I) = y.  This yields Z = i+iRi. As the value of I 
must be the same far upstream and far downstream we obtain 

-&4zW~--iRiW3,+$RiiW~cot[(l-  W,)Rii]+aW, = 0. (3.4) 
Together with (3.2) this gives two equations for the two unknowns, A ,  and W,. These 
equations can be solved in a parametric form. Denote 

h = (1 - W,) Rii, Rii = h / ( l -  W,). (3.5) 
Substituting A ,  from (3.2) and Rii from (3.5) into (3.4) yields an equation for W,: 

[(1-hcoth)2+h2+3hcoth-3] Wz+(4-hcoth) Wm-2 = 0. 

This equation can be solved explicitly, with the correct choice between the two 
solutions made using the evident condition that 0 < W, < 1. The values of Ri and A ,  
can then be found from (3.2) and (3.5). The functions A,(Ri) and W,(Ri) are plotted 
in Figure 2. Note that the limit h+O gives a non-stratified flow: Ri = 0, A ,  = 9, 
W, = $. For h + x, Ri+ x2, A ,  --f 0 and W, --f 0. Hence, in this limit the long-eddy width 
tends to zero. For Ri = x2 momentum conservation allows two states of the flow with 
W, = 0: a uniform one and that described by (3.1) with W, = 0. For finite eddies the 
numerical results given in table 1 show that the eddy width increases with the eddy 
length for a given Ri, and hence the width of the finite eddy must tend to zero for 
Ri+ x 2  also. Although this simplifies the asymptotic investigation of this limit, it 
remains a very difficult problem. 
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Near the front and rear stagnation points this description breaks down. The solution 
of the full equation with corresponding boundary conditions is needed. From the 
computational point of view, this solution may be obtained as a solution of the original 
problem with very large r (specified circulation round the eddy). The calculations with 
the largest r described below are quite suitable for this purpose. Hence, the uniformly 
valid long-eddy asymptotics are in fact obtained. 

4. Numerical procedure 
The vertical eddy symmetry axis was chosen to be the left-hand boundary of the 

computational domain, and the right-hand boundary was located sufficiently far 
downstream at x = x, and the condition @ = y applied at it. Equation (2.1) was 
replaced by 

The widely known alternating-direction method was used, with a finite-difference 
scheme which had second-order accuracy everywhere except in the close vicinity of the 
eddy boundary, where the second derivatives were approximated only to first order. 
Note that the very weak singularities near the stagnation points (see Sadovskii 1971 b, 
or Saffman & Tanveer 1982) cannot affect the overall accuracy of the computations. 
The time step was chosen to be 0.3 of an optimum time step for the corresponding 
linear problem with Ri = 0 in order to suppress the anticipated nonlinear effects. As the 
method proved to be very efficient no different choices were tried. 

Considering - @  as a temperature, an equation like (4.1) with the boundary 
conditions corresponding to those in $1 describes heat conduction in a rectangular 
region, at the lower boundary of which the temperature is zero and negative at the right 
and upper ones. The left-hand boundary is thermally insulated. The source term then 
corresponds to local heating (note that A > 0 because the circulation in the eddy is 
clockwise). For Ri = 0 it is only non-zero in the positive temperature region. The 
heating then is proportional to A and the evident analogy with a sheet of paper set on 
fire shows that the anticipated solution with A independent of t can be unstable. For 
large A almost the whole sheet will be consumed by fire, and for small A the fire will 
go out because of the cooling at the walls. Analysis of the corresponding one- 
dimensional problem (with @ depending only on y and t )  supports this idea to some 
extent. For these reasons no attempts were made to do calculations with constant A .  
Instead, before each time step the area S of the eddy was calculated and the new value 
of A was determined as A = r / S  where r is the specified circulation around the eddy. 
In this way if the region on fire (the eddy) shrinks, the heating increases and vice versa. 

The usual criterion for slowly convergent iterations was applied. The iterations were 
stopped if 11 @n - @,-' 11 d E( 1 - A )  with h = 11 @, - @,-' 11 / 11 - y Y 2  11. Here n is the 
iteration number and 

a@/at  = v ~ $ + ~ ( @ ) .  (4.1) 

ll@nll = (. (@;)zAx by.  
i j  

Ax,Ay are the grid steps and E is the anticipated accuracy. 
The background to this criterion is as follows. Consider an iteration process 

x, =f(x,-,) which converges to the solution x of the equation x =f(x). For x, 
sufficiently close to x we have x, = x+f'(x)(x, -x). Hence (x, -x,-J = (f'(x)- 1) 
(x,-, -x). This means that the correct estimate of the accuracy achieved is 

En-1 = I(x, -x,-,)l(f'(x)- 111. 
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For slowly converging iterations f'(x) is close to I ,  so the widely used criterion, 
Ix, -xn-J  < e, gives erroneous results. The value off'(x) can be estimated via the last 
three iterations. The extension to a multi-dimensional vector x, together with the 
assumption that the major eigenvalue of the matrix of derivatives {?J$G/?J$:;'} is real, 
leads directly to the criterion used here. More detailed discussion can be found in texts 
on numerical methods. 

The total accuracy of the calculations depends on the size of the computational 
domain x,, on the numbers of grid lines in the x- and y-directions ( N  and M ,  
respectively), on e and on the rounding errors (lo-' for single precision and for 
double precision). The memory size of the computers used imposed the restriction 
N x  M < 30000 for single-precision calculations. Assuming Nand M to be of the same 
order of magnitude and taking into account the second order of accuracy of the 
numerical scheme we obtain a minimum error of about 1/N2 x lop4, with maximum 
usage of available memory. Assuming that the (single-precision) rounding errors are 
summed as independent random quantities and that the number of operations per time 
step is of order N x M ,  the rounding errors per time step can be estimated as 
( N  x M): x lop8 x lop4. For double-precision calculations the estimate would be 10-l2. 
However, the total error would be greater because of the inevitable reduction in the 
maximum possible N x M .  For this reason most calculations were made with single 
precision. The value oft: in the convergence criterion cannot be made much smaller 
than the rounding error per time step because of the random behaviour of the rounding 
error. Note that, owing to the iterative nature of the process, the rounding errors do 
not accumulate. 

The influence of the different parameters on the accuracy of the calculations is 
illustrated by the following examples for r = 5 ,  Ri = 2.5. For x, = 4, N = 81, n/i = 41 
and t: = lop3, lop4, and the values of the eddy half-length L; (the most sensitive 
quantity) were 0.8093, 0.8090 and 0.8090, respectively (rounded to four decimal 
places). For t: = 5 x lop5, M = 41, N = 20x,+ 1, x, = 3,4 and 5 the values of L; were 
0.8091,0.8089 and 0.8086. For E = x, = 2, N = 2(M- 1)+ 1, A4 = 25,37,55 and 
82 the values of L; were 0.8093, 0.8054, 0.8044 and 0.8039. Tests of this kind were also 
done for other values of I-' and Ri. In view of these tests and the preceding 
considerations, the accuracy in most cases was estimated as 10-4-10-5. To improve on 
this more computer memory would be needed. As only uniform grids were used in the 
calculations, the flows with small eddies (corresponding to small r and large Ri) 
were calculated less accurately because of insufficient resolution inside the eddies. 
Nevertheless, the errors in the data plotted here are within graphical accuracy and all 
the digits (with the final ones rounded, not truncated) in the table for Ri = 0, r =k 0 are 
correct. Errors in the results for Ri > 0 in table are believed to be less than 1 % (and 
much smaller in most cases) except for Ri = 8.5 and 9 with r = 0.5-2.5 where they may 
be as large as 5 %. 

Calculations for r = 0.5-2.5, Ri = 0 were made on a 161 x 161 grid with x, = 1 and 
for r = 5-50, Ri 2 0 on a 391 x 61 grid with x, = 6. For Ri > 0 and small r, grids of 
241 x 121 and 301 x 101 nodes with x, = 2 and x, = 3 were used. Downstream of the 
eddy the expansion 

$ = C A ,  sin (nny) exp (- An x) 

is valid and A ,  = (x2 - Ri);. Accordingly, for larger Ri longer computational domains 
were needed. 

The correctness of the program was also checked by the comparison of the total 

a2 

n 
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FIGURE 3. Streamlines for Ri = 0 for (a) f = 2.5, (b) r = 5,  ( c )  r = 50. 

momentum flux through the left- and right-hand sides of the computational domain. 
It is also supported by the agreement with the independently calculated long-eddy 
asymptotics (see table 1) and by the agreement with the results of other authors (see 
below). Without undertaking the computations to a much higher degree of precision, 
it is not possible to be absolutely certain that these calculated solutions do, in fact, 
represent real solutions. However, the results of these various checks provided 
considerable confidence in this regard. 

5.  Results 
Results are represented in table 1 and figures 3-5. In the table, C is the energy 

dissipation coefficient defined by C = 2fJw’dxdy and LL is the half-length of the 
eddy. The quantities b, the ratio of the circulation over the upper part of the eddy 
boundary to the circulation around the whole eddy, and a, the ratio of the common 
area of both (upper and lower) halves of the eddy to the square of the eddy length, are 
included because of their role in the asymptotic theory of the corresponding viscous 
flows. In figure 3 (a) the streamlines for r = 2.5 and Ri = 0 are shown. The value of T 
is sufficiently small for the influence of the upper wall on the eddy shape to be 
negligible. In figure 3 (b)  the streamlines for r = 5 are shown and in figure 3 (c)  the 
streamlines for a very long eddy (r = 50, Ri = 0)  near the eddy end are shown. Figure 
4 shows the change of the eddy shape with the Richardson number. 

Figure 5 shows the change in eddy shape with r for R i  = 0. Sadovskii’s (1970) 
results, taken from the table in his paper, and Moore, Saffman & Tanveer’s (1988) 
results, taken from their plot, are shown. Since the decrease of the Bernoulli constant 
on the dividing streamline equals zero in the present calculation, only the corresponding 
results of these other authors are included and no comparison with the results of Smith 
(1986) is possible. Our results are restricted to T+ 0, while Sadovskii’s and Moore 
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FIGURE 4. The eddy shape for r = 5, Ri = 0,4,8,9.  The eddy length grows with Ri. 
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FIGURE 5. Comparisons of the eddy shape for Ri = 0. The lengthscale is the eddy length. Solid curves, 
present work: (a) r= 2.5; (b) r= 5 ;  (c) r= 20; (d )  r = 50. Dashed curve, Sadovskii (1970), 
r = 0. 0, Moore et af. (1988), r = 0. 

et al.’s results are for r = 0 only. Results for r = 0.5 and 1 .O are not shown as they are 
indistinguishable from the Sadovskii result. All results (for sufficiently small r )  are in 
excellent agreement. It should be noted that the discrepancy between Sadovskii’s and 
Moore et d ’ s  values of AL; (o in the notation of Moore et al.) in the case of zero 
Bernoulli decrease is due to an error in the handling of computed data in the former 
work. This was corrected later (Sadovskii & Kozhuro 1977). The corrected Sadovskii 
value of 6.5 is in good agreement with that of Moore et al. and extrapolation of the 
present results to the r = 0 case yields the value 6.44. 

Results for I‘ = 0 in table 1 correspond to the unbounded flow. They were obtained 
by an extrapolation from calculated solutions for Ri = 0, and r = 0.5 and 1.0. These 
results are in reasonable agreement with the results of other authors. Results for 
Ri > 0 must approach those for Ri = 0 when T-t 0. This tendency is clearly seen in the 
table. Results for I‘= co in the table were obtained from the long-eddy asymptotics 
given in 9 3. 

The behaviour of the solution as a function of Ri is complicated. For example, figure 
4 shows a non-monotonic dependence of W on Ri for r = 5. The asymptotics for 
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Ri+.n2 were not investigated here though this could contribute considerably to the 
understanding of the flow. 

For Ri > .n2 wave disturbances must appear (see Turner 1973, for example, for a 
discussion of the extensive literature on such cases). A symmetry imposed in our 
calculations implies in this case a symmetric wave upstream and downstream of the 
eddy. Because of this symmetry there would be no wave drag. Such flows seem to be 
of no interest, since they would generally be quite unphysical. 

This work was undertaken mainly during a visit to the University of Surrey, England 
and was financially supported by the Royal Society of London. The author is very 
grateful to Professor I. P. Castro who drew his attention to stratified flows and also for 
numerous comments, discussions and textual improvements, to Dr K. N. Atkinson 
whose programs were used to prepare the data for plotting and to the whole staff of 
the Department of Mechanical Engineering of the University of Surrey for their 
hospitality and friendliness. 
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